A T-shaped amphiphilic molecule forms closed vesicles in water and bicelles in mixtures with a membrane lipid.
نویسندگان
چکیده
The T-shaped amphiphilic molecule A6/6 forms a columnar hexagonal liquid-crystalline phase between the crystalline and the isotropic liquid when studied in bulk (Chen et al., 2005). Because of the hydrophilic and flexible oligo(oxyethylene) side chain terminated by a 1-acylamino-1-deoxy-d-sorbitol moiety attached to a rigid terphenyl core with terminal hexyloxy alkyl chains, it was expected that also formation of lyotropic phases could be possible. We therefore studied the behavior of A6/6 in water and also in mixtures with bilayer-forming phospholipids, such as dipalmitoyl-phosphatidylcholine (DPPC), using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), and solid-state nuclear magnetic resonance (ssNMR). DSC showed for the pure A6/6 suspended in water a phase transition at ca. 23 °C. TEM and cryo-TEM showed vesicular as well as layered structures for pure A6/6 in water below and above this phase transition. By atomic force microscopy (AFM), the thickness of the layer was found to be 5-6 nm. This leads to a model for a bilayer formed by A6/6 with the laterally attached polar side chains shielding the hydrophobic layer built up by the terphenyl core with the terminal alkyl chains of the molecules. For DPPC:A6/6 mixtures (10:1), the DSC curves indicated a stabilization of the lamellar gel phase of DPPC. Negative staining TEM and cryo-TEM images showed planar bilayers with hexagonal morphology and diameters between 50 and 200 nm. The hydrodynamic radius of these aggregates in water, investigated by dynamic light scattering (DLS) as a function of time and temperature, did not change indicating a very stable aggregate structure. The findings lead to the proposition of a new bicellar structure formed by A6/6 with DPPC. In this model, the bilayer edges are covered by the T-shaped amphiphilic molecules preventing very effectively the aggregation to larger structures.
منابع مشابه
Reinvestigation by phosphorus NMR of lipid distribution in bicelles.
Mixtures of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC) in water form disks also called bicelles and different bilayer organizations when the mol ratio of the two lipids and the temperature are varied. The spontaneous alignment in a magnetic field of these bilayers above the transition temperature T(m) of DMPC is an attractive property that was successfully ...
متن کاملMorphology of fast-tumbling bicelles: a small angle neutron scattering and NMR study.
Bilayered micelles, or bicelles, which consist of a mixture of long- and short-chain phospholipids, are a popular model membrane system. Depending on composition, concentration, and temperature, bicelle mixtures may adopt an isotropic phase or form an aligned phase in magnetic fields. Well-resolved (1)H NMR spectra are observed in the isotropic or so-called fast-tumbling bicelle phase, over the...
متن کاملStructure formation in binary mixtures of lipids and detergents: self-assembly and vesicle division.
Self-assembly dynamics in binary surfactant mixtures and structure changes of lipid vesicles induced by detergent solution are studied using coarse-grained molecular simulations. Disk-shaped micelles, the bicelles, are stabilized by detergents surrounding the rim of a bilayer disk of lipids. The self-assembled bicelles are considerably smaller than bicelles formed from vesicle rupture, and thei...
متن کاملThe first cell membranes.
Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous species. Some of these compounds are amphiphilic, having polar and nonpolar groups on the same molecule. Amphiphilic compounds spontaneously self-assemble into more complex structures such as bimolecular layers, which in turn form closed...
متن کاملShape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study
Dissipative particle dynamics (DPD) simulations are employed to study the shape transformations of vesicles formed from amphiphilic triblock copolymers. The amphiphilic molecule is built from two different hydrophilic blocks on the sides and a hydrophobic block in the middle. To model the asymmetric membrane in the vesicle, spontaneous curvature is introduced by the difference in repulsive para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. B
دوره 116 16 شماره
صفحات -
تاریخ انتشار 2012